Covariance Kernels from Bayesian Generative Models
نویسنده
چکیده
We propose the framework of mutual information kernels for learning covariance kernels, as used in Support Vector machines and Gaussian process classifiers, from unlabeled task data using Bayesian techniques. We describe an implementation of this framework which uses variational Bayesian mixtures of factor analyzers in order to attack classification problems in high-dimensional spaces where labeled data is sparse, but unlabeled data is abundant.
منابع مشابه
A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications
Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM’s. In this paper we suggest an alternative procedure to the Fishe...
متن کاملBhattacharyya and Expected Likelihood Kernels
We introduce a new class of kernels between distributions. These induce a kernel on the input space between data points by associating to each datum a generative model fit to the data point individually. The kernel is then computed by integrating the product of the two generative models corresponding to two data points. This kernel permits discriminative estimation via, for instance, support ve...
متن کاملCombining information theoretic kernels with generative embeddings for classification
Classical approaches to learn classifiers for structured objects (e.g., images, sequences) use generative models in a standard Bayesian framework. To exploit the state-of-the-art performance of discriminative learning, while also taking advantage of generative models of the data, generative embeddings have been recently proposed as a way of building hybrid discriminative/generative approaches. ...
متن کاملGranger causality revisited
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kern...
متن کاملInformation Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models
Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial data (e.g., support vector machines) are learned discriminatively. A generative embedding is a mapping from the object space into a fixed dimensional feature space, induced by a generative model which is usually learned ...
متن کامل